Search results
Results from the WOW.Com Content Network
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
This histogram differs from the first only in the vertical scale. The area of each block is the fraction of the total that each category represents, and the total area of all the bars is equal to 1 (the fraction meaning "all"). The curve displayed is a simple density estimate. This version shows proportions, and is also known as a unit area ...
A base-10 log scale is used for the Y-axis of the bottom left graph, and the Y-axis ranges from 0.1 to 1000. The top right graph uses a log-10 scale for just the X-axis, and the bottom right graph uses a log-10 scale for both the X axis and the Y-axis. Presentation of data on a logarithmic scale can be helpful when the data:
In the lower plot, both the area and population data have been transformed using the logarithm function. In statistics , data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point z i is replaced with the transformed value y i = f ( z i ), where f is a function.
Rattle provides considerable data mining functionality by exposing the power of the R Statistical Software through a graphical user interface. Rattle is also used as a teaching facility to learn the R software Language. There is a Log Code tab, which replicates the R code for any activity undertaken in the GUI, which can be copied and pasted.
Relative species abundance distributions are usually graphed as frequency histograms ("Preston plots"; Figure 2) [7] or rank-abundance diagrams ("Whittaker Plots"; Figure 3). [8] Frequency histogram (Preston plot): x-axis: logarithm of abundance bins (historically log 2 as a rough approximation to the natural logarithm)
Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.