enow.com Web Search

  1. Ads

    related to: properties of hyperbolic geometry examples pictures and solutions worksheet

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    Compared to Euclidean geometry, hyperbolic geometry presents many difficulties for a coordinate system: the angle sum of a quadrilateral is always less than 360°; there are no equidistant lines, so a proper rectangle would need to be enclosed by two lines and two hypercycles; parallel-transporting a line segment around a quadrilateral causes ...

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows.

  4. Ideal triangle - Wikipedia

    en.wikipedia.org/wiki/Ideal_triangle

    Ideal triangles have the following properties: All ideal triangles are congruent to each other. The interior angles of an ideal triangle are all zero. An ideal triangle has infinite perimeter. An ideal triangle is the largest possible triangle in hyperbolic geometry.

  5. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    The sum of the angles of a quadrilateral in hyperbolic geometry is always less than 4 right angles (see Lambert quadrilateral). Also in hyperbolic geometry there are no equidistant lines (see hypercycles). This all has influences on the coordinate systems. There are however different coordinate systems for hyperbolic plane geometry.

  6. Hyperbolic triangle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_triangle

    In hyperbolic geometry, a hyperbolic triangle is a triangle in the hyperbolic plane. It consists of three line segments called sides or edges and three points called angles or vertices . Just as in the Euclidean case, three points of a hyperbolic space of an arbitrary dimension always lie on the same plane.

  7. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Two-dimensional hyperbolic surfaces can also be understood according to the language of Riemann surfaces. According to the uniformization theorem, every Riemann surface is either elliptic, parabolic or hyperbolic. Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups.

  1. Ads

    related to: properties of hyperbolic geometry examples pictures and solutions worksheet