Search results
Results from the WOW.Com Content Network
Macrophages of the reticuloendothelial system store iron as part of the process of breaking down and processing hemoglobin from engulfed red blood cells. Iron is also stored as a pigment called hemosiderin, which is an ill-defined deposit of protein and iron, created by macrophages where excess iron is present, either locally or systemically, e ...
It is the primary intracellular iron-storage protein in both prokaryotes and eukaryotes, keeping iron in a soluble and non-toxic form. In humans, it acts as a buffer against iron deficiency and iron overload. [3] Ferritin is found in most tissues as a cytosolic protein, but small amounts are secreted into the serum where it functions as an iron ...
Macrophages of the reticuloendothelial system store iron as part of the process of breaking down and processing hemoglobin from engulfed red blood cells. Iron is also stored as a pigment called hemosiderin, which is an ill-defined deposit of protein and iron, created by macrophages where excess iron is present, either locally or systemically, e ...
In blood plasma, zinc is bound to and transported by albumin (60%, low-affinity) and transferrin (10%). [10] Because transferrin also transports iron, excessive iron reduces zinc absorption, and vice versa. A similar antagonism exists with copper. [30] The concentration of zinc in blood plasma stays relatively constant regardless of zinc intake ...
When blood leaves a ruptured blood vessel, the red blood cell dies, and the hemoglobin of the cell is released into the extracellular space. Phagocytic cells (of the mononuclear phagocyte system) called macrophages engulf (phagocytose) the hemoglobin to degrade it, producing hemosiderin and biliverdin. Excessive systemic accumulations of ...
In blood approximately 85% of carbon dioxide, is converted into aqueous carbonate ions (an acidic solution), allowing a greater rate of transportation. Co 2+ - cobalt ions are present in the human body in amounts from 1 to 2 mg. [ 4 ] Cobalt is observed in the heart, liver, kidney, and spleen, and considerably smaller quantities in the pancreas ...
Mn-SOD and Fe-SOD are found in most prokaryotes and mitochondria of the eukaryotic cell. Cu-SOD can be found in the cytoplasmic fraction of the eukaryotic cells. The three elements, copper, iron and manganese, can all catalyze superoxide to ordinary molecular oxygen or hydrogen peroxide. However, Cu-SOD is more efficient than Fe-SOD and Mn-SOD.
The heme iron serves as a source or sink of electrons during electron transfer or redox chemistry. In peroxidase reactions, the porphyrin molecule also serves as an electron source, being able to delocalize radical electrons in the conjugated ring. In the transportation or detection of diatomic gases, the gas binds to the heme iron.