Search results
Results from the WOW.Com Content Network
The reactors were heavy water reactors so that they could produce both plutonium and tritium for the US nuclear weapons program. The U.S. developed the Girdler sulfide chemical exchange production process—which was first demonstrated on a large scale at the Dana, Indiana plant in 1945 and at the Savannah River Site in 1952.
A nuclear reactor coolant is a coolant in a nuclear reactor used to remove heat from the nuclear reactor core and transfer it to electrical generators and the environment. Frequently, a chain of two coolant loops are used because the primary coolant loop takes on short-term radioactivity from the reactor.
A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water (deuterium oxide D 2 O) as its coolant and neutron moderator. [1] PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium .
During radiolysis of the Pressure Suppression Pool water below the Chernobyl reactor, hydrogen peroxide was formed. The hypothesis that the pool water was partially converted to H 2 O 2 is confirmed by the identification of the white crystalline minerals studtite and metastudtite in the Chernobyl lavas, [25] [26] the only minerals that contain ...
In cooling systems of nuclear reactors, the formation of free oxygen would promote corrosion and is counteracted by addition of hydrogen to the cooling water. [22] The hydrogen is not consumed as for each molecule reacting with oxygen one molecule is liberated by radiolysis of water; the excess hydrogen just serves to shift the reaction ...
A criticality accident occurs if the same reaction is achieved unintentionally, for example in an unsafe environment or during reactor maintenance. Though dangerous and frequently lethal to humans within the immediate area, the critical mass formed would not be capable of producing a massive nuclear explosion of the type that fission bombs are ...
The Fukushima Daiichi nuclear disaster in 2011 occurred due to a loss-of-coolant accident. The circuits that provided electrical power to the coolant pumps failed causing a loss-of-core-cooling that was critical for the removal of residual decay heat which is produced even after active reactors are shut down and nuclear fission has ceased.
Nuclear power plants generate electricity by heating fluid via a nuclear reaction to run a generator. If the heat from that reaction is not removed adequately, the fuel assemblies in a reactor core can melt. A core damage incident can occur even after a reactor is shut down because the fuel continues to produce decay heat.