enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Perovskite solar cell - Wikipedia

    en.wikipedia.org/wiki/Perovskite_solar_cell

    Crystal structure of CH 3 NH 3 PbX 3 perovskites (X=I, Br and/or Cl). The methylammonium cation (CH 3 NH 3 +) is surrounded by PbX 6 octahedra. [13]The name "perovskite solar cell" is derived from the ABX 3 crystal structure of the absorber materials, referred to as perovskite structure, where A and B are cations and X is an anion.

  3. Perovskite (structure) - Wikipedia

    en.wikipedia.org/wiki/Perovskite_(structure)

    However, the solar cells are prone to degradation due to volatility of the organic [CH 3 NH 3] + I − salt. The all-inorganic perovskite cesium lead iodide perovskite (CsPbI 3) circumvents this problem, but is itself phase-unstable, the low temperature solution methods of which have only been recently developed. [47]

  4. Tin-based perovskite solar cell - Wikipedia

    en.wikipedia.org/.../Tin-based_perovskite_solar_cell

    The main obstacle to viable tin perovskite solar cells is the instability of tin's oxidation state Sn 2+, which is easily oxidized to the stabler Sn 4+. [10] In solar cell research, this process is called self-doping, [11] because the Sn 4+ acts as a p-dopant and reduces solar cell efficiency.

  5. Light soaking - Wikipedia

    en.wikipedia.org/wiki/Light_soaking

    Perovskite solar cells are very new and many research in solar cells is focussed on these promising technologies. In these solar cells different effects have been observed after light soaking. Both increases and decreases in device performance have been found. These effects can be reversible as well as permanent.

  6. Solar cell - Wikipedia

    en.wikipedia.org/wiki/Solar_cell

    Perovskite solar cells are also forecast to be extremely cheap to scale up, making them a very attractive option for commercialisation. So far most types of perovskite solar cells have not reached sufficient operational stability to be commercialised, although many research groups are investigating ways to solve this. [99]

  7. Methylammonium lead halide - Wikipedia

    en.wikipedia.org/wiki/Methylammonium_lead_halide

    Methylammonium lead halides (MALHs) are solid compounds with perovskite structure and a chemical formula of [CH 3 NH 3] + Pb 2+ (X −) 3, where X = Cl, Br or I. They have potential applications in solar cells, [2] lasers, light-emitting diodes, photodetectors, radiation detectors, [3] [4] scintillator, [5] magneto-optical data storage [6] and ...

  8. Photovoltaics - Wikipedia

    en.wikipedia.org/wiki/Photovoltaics

    Perovskite solar cells have therefore been the fastest-advancing solar technology as of 2016. [123] With the potential of achieving even higher efficiencies and very low production costs, perovskite solar cells have become commercially attractive. Core problems and research subjects include their short- and long-term stability. [129]

  9. Carrier lifetime - Wikipedia

    en.wikipedia.org/wiki/Carrier_Lifetime

    This solar cell is preferable due to its comparatively cheap and simple manufacturing process. Modern advancements suggest that there is still ample room to improve on the carrier lifetime of this solar cell, with most of the issues surrounding it being construction-related. [16] In addition to solar cells, perovskites can be utilized to ...