Search results
Results from the WOW.Com Content Network
Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.
A matrix with the same number of rows and columns is called a square matrix. [5] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix. In some contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an empty matrix.
For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...
Julia Set made with desmos.com where c = -0.84 + 0.19i Γ(z) in the complex plane made with Desmos 3D. Desmos also offers other services: the Scientific Calculator, Four Function Calculator, Matrix Calculator, Geometry Tool, Geometry Calculator, 3D Graphing Calculator, and Desmos Test Mode. [22] [23]
In characteristic 2 the latter equality turns into = {, …,} (¯) what therefore provides an opportunity to polynomial-time calculate the Hamiltonian cycle polynomial of any unitary (i.e. such that = where is the identity n×n-matrix), because each minor of such a matrix coincides with its algebraic complement: = (+ /) where ...
The operation of taking the principal square root is continuous on this set of matrices. [4] These properties are consequences of the holomorphic functional calculus applied to matrices. [5] [6] The existence and uniqueness of the principal square root can be deduced directly from the Jordan normal form (see below).
In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).
In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.