enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    A matrix with the same number of rows and columns is called a square matrix. [5] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix. In some contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an empty matrix.

  4. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...

  5. Desmos - Wikipedia

    en.wikipedia.org/wiki/Desmos

    Julia Set made with desmos.com where c = -0.84 + 0.19i Γ(z) in the complex plane made with Desmos 3D. Desmos also offers other services: the Scientific Calculator, Four Function Calculator, Matrix Calculator, Geometry Tool, Geometry Calculator, 3D Graphing Calculator, and Desmos Test Mode. [22] [23]

  6. Computing the permanent - Wikipedia

    en.wikipedia.org/wiki/Computing_the_permanent

    In characteristic 2 the latter equality turns into ⁡ = {, …,} ⁡ (¯) what therefore provides an opportunity to polynomial-time calculate the Hamiltonian cycle polynomial of any unitary (i.e. such that = where is the identity n×n-matrix), because each minor of such a matrix coincides with its algebraic complement: ⁡ = ⁡ (+ /) where ...

  7. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    The operation of taking the principal square root is continuous on this set of matrices. [4] These properties are consequences of the holomorphic functional calculus applied to matrices. [5] [6] The existence and uniqueness of the principal square root can be deduced directly from the Jordan normal form (see below).

  8. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.