enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Since matrix multiplication forms the basis for many algorithms, and many operations on matrices even have the same complexity as matrix multiplication (up to a multiplicative constant), the computational complexity of matrix multiplication appears throughout numerical linear algebra and theoretical computer science.

  3. Computing the permanent - Wikipedia

    en.wikipedia.org/wiki/Computing_the_permanent

    In characteristic 2 the latter equality turns into ⁡ = {, …,} ⁡ (¯) what therefore provides an opportunity to polynomial-time calculate the Hamiltonian cycle polynomial of any unitary (i.e. such that = where is the identity n×n-matrix), because each minor of such a matrix coincides with its algebraic complement: ⁡ = ⁡ (+ /) where ...

  4. Permanent (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Permanent_(mathematics)

    Laplace's expansion by minors for computing the determinant along a row, column or diagonal extends to the permanent by ignoring all signs. [9]For every , = =,,,where , is the entry of the ith row and the jth column of B, and , is the permanent of the submatrix obtained by removing the ith row and the jth column of B.

  5. Bareiss algorithm - Wikipedia

    en.wikipedia.org/wiki/Bareiss_algorithm

    In mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder).

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Others, such as matrix addition, scalar multiplication, matrix multiplication, and row operations involve operations on matrix entries and therefore require that matrix entries are numbers or belong to a field or a ring. [8] In this section, it is supposed that matrix entries belong to a fixed ring, which is typically a field of numbers.

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y, because the multiplication operator for matrix-to-matrix is not commutative. Moreover, If X is normal and non-singular, then X Y and Y X have the same set of eigenvalues. If X is normal and non-singular, Y is normal, and XY ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Frobenius inner product - Wikipedia

    en.wikipedia.org/wiki/Frobenius_inner_product

    In mathematics, the Frobenius inner product is a binary operation that takes two matrices and returns a scalar.It is often denoted , .The operation is a component-wise inner product of two matrices as though they are vectors, and satisfies the axioms for an inner product.