Search results
Results from the WOW.Com Content Network
Depth-first search (DFS) is an algorithm for traversing or searching tree or graph data structures. The algorithm starts at the root node (selecting some arbitrary node as the root node in the case of a graph) and explores as far as possible along each branch before backtracking.
All together, an iterative deepening search from depth all the way down to depth expands only about % more nodes than a single breadth-first or depth-limited search to depth , when =. [ 4 ] The higher the branching factor, the lower the overhead of repeatedly expanded states, [ 1 ] : 6 but even when the branching factor is 2, iterative ...
Several algorithms based on depth-first search compute strongly connected components in linear time.. Kosaraju's algorithm uses two passes of depth-first search. The first, in the original graph, is used to choose the order in which the outer loop of the second depth-first search tests vertices for having been visited already and recursively explores them if not.
Randomized depth-first search on a hexagonal grid. The depth-first search algorithm of maze generation is frequently implemented using backtracking. This can be described with a following recursive routine: Given a current cell as a parameter; Mark the current cell as visited; While the current cell has any unvisited neighbour cells
IDA* is a depth-first search that looks for increasingly longer solutions in a series of iterations, using a lower-bound heuristic to prune branches once a lower bound on their length exceeds the current iterations bound. It works roughly as follows. First he identified a number of subproblems that are small enough to be solved optimally. He used:
The depth is standard to maintain during a depth-first search. The lowpoint of v can be computed after visiting all descendants of v (i.e., just before v gets popped off the depth-first-search stack) as the minimum of the depth of v, the depth of all neighbors of v (other than the parent of v in the depth-first-search tree) and the lowpoint of ...
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):