enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Makridakis Competitions - Wikipedia

    en.wikipedia.org/wiki/Makridakis_Competitions

    The time series included yearly, quarterly, monthly, daily, and other time series. In order to ensure that enough data was available to develop an accurate forecasting model, minimum thresholds were set for the number of observations: 14 for yearly series, 16 for quarterly series, 48 for monthly series, and 60 for other series. [1]

  3. Mean absolute scaled error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_scaled_error

    This metric is well suited to intermittent-demand series (a data set containing a large amount of zeros) because it never gives infinite or undefined values [1] except in the irrelevant case where all historical data are equal. [3] When comparing forecasting methods, the method with the lowest MASE is the preferred method.

  4. Time series - Wikipedia

    en.wikipedia.org/wiki/Time_series

    If the answer is the time data field, then this is a time series data set candidate. If determining a unique record requires a time data field and an additional identifier which is unrelated to time (e.g. student ID, stock symbol, country code), then it is panel data candidate.

  5. Box–Jenkins method - Wikipedia

    en.wikipedia.org/wiki/Box–Jenkins_method

    The original model uses an iterative three-stage modeling approach: Model identification and model selection: making sure that the variables are stationary, identifying seasonality in the dependent series (seasonally differencing it if necessary), and using plots of the autocorrelation (ACF) and partial autocorrelation (PACF) functions of the dependent time series to decide which (if any ...

  6. Forecast error - Wikipedia

    en.wikipedia.org/wiki/Forecast_error

    Download as PDF; Printable version; In other projects ... more accurate than those of "naive or sophisticated time-series models" nor have the errors been increasing ...

  7. Variance decomposition of forecast errors - Wikipedia

    en.wikipedia.org/wiki/Variance_decomposition_of...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  8. Error correction model - Wikipedia

    en.wikipedia.org/wiki/Error_correction_model

    Thus detrending does not solve the estimation problem. In order to still use the Box–Jenkins approach, one could difference the series and then estimate models such as ARIMA, given that many commonly used time series (e.g. in economics) appear to be stationary in first differences. Forecasts from such a model will still reflect cycles and ...

  9. Change detection - Wikipedia

    en.wikipedia.org/wiki/Change_detection

    A time series measures the progression of one or more quantities over time. For instance, the figure above shows the level of water in the Nile river between 1870 and 1970. Change point detection is concerned with identifying whether, and if so when , the behavior of the series changes significantly.