Search results
Results from the WOW.Com Content Network
A 6-bladed Hamilton Standard 568F propeller on an ATR 72 short-haul airliner. Lowry [27] quotes a propeller efficiency of about 73.5% at cruise for a Cessna 172.This is derived from his "Bootstrap approach" for analyzing the performance of light general aviation aircraft using fixed pitch or constant speed propellers.
Contra-rotating propellers Contra-rotating propellers on the Rolls-Royce Griffon-powered P-51XR Mustang Precious Metal at the 2014 Reno Air Races. Aircraft equipped with contra-rotating propellers (CRP) [1] coaxial contra-rotating propellers, or high-speed propellers, apply the maximum power of usually a single piston engine or turboprop engine to drive a pair of coaxial propellers in contra ...
Counter-rotating propellers generally turn clockwise on the left engine and counterclockwise on the right. The advantage of such designs is that counter-rotating propellers balance the effects of torque and P-factor, meaning that such aircraft do not have a critical engine in the case of engine failure.
An advanced type of propeller used on the American Los Angeles-class submarine as well as the German Type 212 submarine is called a skewback propeller. As in the scimitar blades used on some aircraft, the blade tips of a skewback propeller are swept back against the direction of rotation. In addition, the blades are tilted rearward along the ...
When an aircraft is stationary with the propeller spinning (in calm air), the relative wind vector for each propeller blade is from the side. However, as the aircraft starts to move forward, the relative wind vector comes increasingly from the front. The propeller blade pitch must be increased to maintain optimum angle of attack to the relative ...
Propellers work well until the flight speed of the aircraft is high enough that the airflow past the blade tips reaches the speed of sound. Beyond that speed, the proportion of the power that drives the propeller that is converted to propeller thrust falls dramatically.
Propeller-driven aircraft generate reverse thrust by changing the angle of their controllable-pitch propellers so that the propellers direct their thrust forward. This reverse thrust feature became available with the development of controllable-pitch propellers, which change the angle of the propeller blades to make efficient use of engine ...
Lightly loaded propellers for light aircraft and human-powered boats mostly have two blades, motor boats mostly have three blades. The blades are attached to a boss (hub), and while it can be a big boss, it should be as small as the needs of strength allow – with fixed-pitch propellers the blades and boss are usually a single casting.