enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Square (algebra) - Wikipedia

    en.wikipedia.org/wiki/Square_(algebra)

    The lack of real square roots for the negative numbers can be used to expand the real number system to the complex numbers, by postulating the imaginary unit i, which is one of the square roots of −1. The property "every non-negative real number is a square" has been generalized to the notion of a real closed field, which is an ordered field ...

  3. −1 - Wikipedia

    en.wikipedia.org/wiki/%E2%88%921

    In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0 .

  4. Imaginary number - Wikipedia

    en.wikipedia.org/wiki/Imaginary_number

    An illustration of the complex plane. The imaginary numbers are on the vertical coordinate axis. Although the Greek mathematician and engineer Heron of Alexandria is noted as the first to present a calculation involving the square root of a negative number, [6] [7] it was Rafael Bombelli who first set down the rules for multiplication of complex numbers in 1572.

  5. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, − ‍ (−3) = 3 because the opposite of an opposite is the original value.

  6. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    Negative one: −1 −1 300 to 200 BCE Cube root of 2: 1.25992 10498 94873 16476 [Mw 6] [OEIS 8] Real root of = 46 to 120 CE [11] Cube root of 3 1.44224 95703 07408 38232 [OEIS 9] Real root of = Twelfth root of 2 [12]

  7. Imaginary unit - Wikipedia

    en.wikipedia.org/wiki/Imaginary_unit

    Square roots of negative numbers are called imaginary because in early-modern mathematics, only what are now called real numbers, obtainable by physical measurements or basic arithmetic, were considered to be numbers at all – even negative numbers were treated with skepticism – so the square root of a negative number was previously considered undefined or nonsensical.

  8. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  9. Sign (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Sign_(mathematics)

    The plus and minus symbols are used to show the sign of a number. In mathematics, the sign of a real number is its property of being either positive, negative, or 0.Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign.