Search results
Results from the WOW.Com Content Network
Defining equation (physical chemistry) List of electromagnetism equations; List of equations in classical mechanics; List of equations in quantum mechanics; List of equations in wave theory; List of photonics equations; List of relativistic equations; Relativistic wave equations
PDF version of the Basic Physics of Nuclear Medicine Wikibook. Licensing Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License , Version 1.2 or any later version published by the Free Software Foundation ; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
In nuclear physics, the Geiger–Nuttall law or Geiger–Nuttall rule relates the decay constant of a radioactive isotope with the energy of the alpha particles emitted. Roughly speaking, it states that short-lived isotopes emit more energetic alpha particles than long-lived ones.
From a quantum chromodynamics point of view, the Gell-Mann–Nishijima formula and its generalized version can be derived using an approximate SU(3) flavour symmetry because the charges can be defined using the corresponding conserved Noether currents.
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]
In nuclear physics, ab initio methods seek to describe the atomic nucleus from the bottom up by solving the non-relativistic Schrödinger equation for all constituent nucleons and the forces between them. This is done either exactly for very light nuclei (up to four nucleons) or by employing certain well-controlled approximations for heavier ...
In physics and chemistry, specifically in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and electron spin resonance (ESR), the Bloch equations are a set of macroscopic equations that are used to calculate the nuclear magnetization M = (M x, M y, M z) as a function of time when relaxation times T 1 and T 2 are present.
Nuclear matter is an idealized system of interacting nucleons (protons and neutrons) that exists in several phases of exotic matter that, as of yet, are not fully established. [2] It is not matter in an atomic nucleus , but a hypothetical substance consisting of a huge number of protons and neutrons held together by only nuclear forces and no ...