Search results
Results from the WOW.Com Content Network
In theoretical computer science, the continuous knapsack problem (also known as the fractional knapsack problem) is an algorithmic problem in combinatorial optimization in which the goal is to fill a container (the "knapsack") with fractional amounts of different materials chosen to maximize the value of the selected materials.
Knapsack problems appear in real-world decision-making processes in a wide variety of fields, such as finding the least wasteful way to cut raw materials, [3] selection of investments and portfolios, [4] selection of assets for asset-backed securitization, [5] and generating keys for the Merkle–Hellman [6] and other knapsack cryptosystems.
The knapsack problem is one of the most studied problems in combinatorial optimization, with many real-life applications. For this reason, many special cases and generalizations have been examined. For this reason, many special cases and generalizations have been examined.
Packing circles in a square - closely related to spreading points in a unit square with the objective of finding the greatest minimal separation, d n, between points. To convert between these two formulations of the problem, the square side for unit circles will be L = 2 + 2 / d n {\displaystyle L=2+2/d_{n}} .
The problem of fractional knapsack with penalties was introduced by Malaguti, Monaci, Paronuzzi and Pferschy. [44] They developed an FPTAS and a dynamic program for the problem, and they showed an extensive computational study comparing the performance of their models.
According to the New York Times, here's exactly how to play Strands: Find theme words to fill the board. Theme words stay highlighted in blue when found.
After over 100 people were killed in a South Korea plane accident, here are the worst accidents and crashes in aviation history.
Multi-objective 0-1 knapsack problem. [22] Parametric knapsack problem. [23] Symmetric quadratic knapsack problem. [24] Count-subset-sum (#SubsetSum) - finding the number of distinct subsets with a sum of at most C. [25] Restricted shortest path: finding a minimum-cost path between two nodes in a graph, subject to a delay constraint. [26]