Search results
Results from the WOW.Com Content Network
The transformer model has been implemented in standard deep learning frameworks such as TensorFlow and PyTorch. Transformers is a library produced by Hugging Face that supplies transformer-based architectures and pretrained models.
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset. [18]
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [ 1 ] [ 2 ] Like the original Transformer model, [ 3 ] T5 models are encoder-decoder Transformers , where the encoder processes the input text, and the decoder generates the output text.
The paper introduced a new deep learning architecture known as the transformer, based on the attention mechanism proposed in 2014 by Bahdanau et al. [4] It is considered a foundational [5] paper in modern artificial intelligence, as the transformer approach has become the main architecture of large language models like those based on GPT.
Bidirectional encoder representations from transformers (BERT) is a language model introduced in October 2018 by researchers at Google. [1] [2] It learns to represent text as a sequence of vectors using self-supervised learning. It uses the encoder-only transformer architecture.
Generative Pre-trained Transformer 3 (GPT-3) is a large language model released by OpenAI in 2020.. Like its predecessor, GPT-2, it is a decoder-only [2] transformer model of deep neural network, which supersedes recurrence and convolution-based architectures with a technique known as "attention". [3]
Deep learning has been placed on a high altar in recent years, especially because of its application in the large language models (LLMs) that power today’s generative AI.
Ashish Vaswani (born 1986) is a computer scientist working in deep learning, [1] who is known for his significant contributions to the field of artificial intelligence (AI) and natural language processing (NLP).