Search results
Results from the WOW.Com Content Network
In geometry, an icositetrahedron [1] is a polyhedron with 24 faces. There are many symmetric forms, and the ones with highest symmetry have chiral icosahedral symmetry: Four Catalan solids, convex: Triakis octahedron - isosceles triangles; Tetrakis hexahedron - isosceles triangles; Deltoidal icositetrahedron - kites; Pentagonal icositetrahedron ...
In geometry, the deltoidal icositetrahedron (or trapezoidal icositetrahedron, tetragonal icosikaitetrahedron, [1] tetragonal trisoctahedron, [2] strombic icositetrahedron) is a Catalan solid. Its 24 faces are congruent kites . [ 3 ]
A geometric construction of the Tribonacci constant (AC), with compass and marked ruler, according to the method described by Xerardo Neira. 3d model of a pentagonal icositetrahedron. In geometry, a pentagonal icositetrahedron or pentagonal icosikaitetrahedron [1] is a Catalan solid which is the dual of the snub cube.
Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.
3D model of a truncated icosahedron. In geometry, the truncated icosahedron is a polyhedron that can be constructed by truncating all of the regular icosahedron's vertices. . Intuitively, it may be regarded as footballs (or soccer balls) that are typically patterned with white hexagons and black pentag
In geometry, the great deltoidal icositetrahedron (or great sagittal disdodecahedron) is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Its faces are darts. Part of each dart lies inside the solid, hence is invisible in solid models.
In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi-) triangular faces and twelve (dodeca-) pentagonal faces. An icosidodecahedron has 30 identical vertices , with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon.
In geometry, a tessellation of dimension 2 (a plane tiling) or higher, or a polytope of dimension 3 (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit.