Search results
Results from the WOW.Com Content Network
Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...
The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is a 1960 article written by the physicist Eugene Wigner, published in Communication in Pure and Applied Mathematics. [ 1 ] [ 2 ] In it, Wigner observes that a theoretical physics's mathematical structure often points the way to further advances in that theory and to ...
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
The preceding kinds of definitions, which had prevailed since Aristotle's time, [4] were abandoned in the 19th century as new branches of mathematics were developed, which bore no obvious relation to measurement or the physical world, such as group theory, projective geometry, [3] and non-Euclidean geometry.
In its most common sense, rationality is the quality of being guided by reasons or being reasonable. [1] [2] [3] For example, a person who acts rationally has good reasons for what they do. This usually implies that they reflected on the possible consequences of their action and the goal it is supposed to realize.
The unreasonable ineffectiveness of mathematics is a phrase that alludes to the article by physicist Eugene Wigner, "The Unreasonable Effectiveness of Mathematics in the Natural Sciences". This phrase is meant to suggest that mathematical analysis has not proved as valuable in other fields as it has in physics .
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures (length, area, volume) and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context.
Despite the newly abstract situation, this definition is extremely similar in nature to the very simplest definition of expected values, given above, as certain weighted averages. This is because, in measure theory, the value of the Lebesgue integral of X is defined via weighted averages of approximations of X which take on finitely many values ...