Search results
Results from the WOW.Com Content Network
Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with ...
Compatible with other formats Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform TensorFlow, Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX: Algorithm training Yes No / Separate files in most formats ...
PlaidML supports the machine learning libraries Keras, ONNX, and nGraph. However, Keras have dropped support of multiple backends and latest Keras version isn't compatible with PlaidML. An integration with Tensorflow-Keras is planned as a replacement for Keras.
Numpy is one of the most popular Python data libraries, and TensorFlow offers integration and compatibility with its data structures. [66] Numpy NDarrays, the library's native datatype, are automatically converted to TensorFlow Tensors in TF operations; the same is also true vice versa. [ 66 ]
Dask-ML is compatible with scikit-learn’s estimator API of fit, transform and predict and is well integrated with machine learning and deep learning frameworks such XGBoost, LightGBM, PyTorch, Keras, and TensorFlow through scikit-learn compatible wrappers.
Deeplearning4j relies on the widely used programming language Java, though it is compatible with Clojure and includes a Scala application programming interface (API). It is powered by its own open-source numerical computing library, ND4J, and works with both central processing units (CPUs) and graphics processing units (GPUs).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
SqueezeNet was originally described in SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size. [1] AlexNet is a deep neural network that has 240 MB of parameters, and SqueezeNet has just 5 MB of parameters.