Search results
Results from the WOW.Com Content Network
The human mitochondrial genome is the entirety of hereditary information contained in human mitochondria. Mitochondria are small structures in cells that generate energy for the cell to use, and are hence referred to as the "powerhouses" of the cell. Mitochondrial DNA (mtDNA) is not transmitted through nuclear DNA (nDNA).
Mitochondrial DNA is the small circular chromosome found inside mitochondria. These organelles, found in all eukaryotic cells, are the powerhouse of the cell. [1] The mitochondria, and thus mitochondrial DNA, are passed exclusively from mother to offspring through the egg cell.
MT-ND2 is located in mitochondrial DNA from base pair 4,470 to 5,511. [5] The MT-ND2 gene produces a 39 kDa protein composed of 347 amino acids. [10] [11] MT-ND2 is one of seven mitochondrial genes encoding subunits of the enzyme NADH dehydrogenase (ubiquinone), together with MT-ND1, MT-ND3, MT-ND4, MT-ND4L, MT-ND5, and MT-ND6.
Mitochondria with their mitochondrial DNA are already present in the egg cell before it gets fertilized by a sperm. In many cases of fertilization, the head of the sperm enters the egg cell; leaving its middle part, with its mitochondria, behind. The mitochondrial DNA of the sperm often remains outside the zygote and gets excluded from inheritance.
Location of the MT-CO1 gene in the human mitochondrial genome.MT-CO1 is one of the three cytochrome c oxidase subunit mitochondrial genes (orange boxes).. Cytochrome c oxidase I (COX1) also known as mitochondrially encoded cytochrome c oxidase I (MT-CO1) is a protein that is encoded by the MT-CO1 gene in eukaryotes. [6]
Mitochondrial biogenesis is the process by which cells increase mitochondrial numbers. [1] [2] It was first described by John Holloszy in the 1960s, when it was discovered that physical endurance training induced higher mitochondrial content levels, leading to greater glucose uptake by muscles. [3]
The mtDNA control region is an area of the mitochondrial genome which is non-coding DNA. This region controls RNA and DNA synthesis. [1] It is the most polymorphic region of the human mtDNA genome, [2] with polymorphism concentrated in hypervariable regions. The average nucleotide diversity in these regions is 1.7%. [3]
Branches are identified by one or more unique markers which give a mitochondrial "DNA signature" or "haplotype" (e.g. the CRS is a haplotype). Each marker is a DNA base-pair that has resulted from an SNP mutation. Scientists sort mitochondrial DNA results into more or less related groups, with more or less recent common ancestors.