Search results
Results from the WOW.Com Content Network
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
For example, a series of simple observations, such as a person's location in a room, can be interpreted to determine more complex information, such as in what task or activity the person is performing. Two kinds of Hierarchical Markov Models are the Hierarchical hidden Markov model [2] and the Abstract Hidden Markov Model. [3]
There exists a range of different model classes and methodology that make use of latent variables and allow inference in the presence of latent variables. Models include: linear mixed-effects models and nonlinear mixed-effects models; Hidden Markov models; Factor analysis; Item response theory; Analysis and inference methods include:
In statistics, a hidden Markov random field is a generalization of a hidden Markov model. Instead of having an underlying Markov chain, hidden Markov random fields have an underlying Markov random field. Suppose that we observe a random variable , where .
Layered hidden Markov model This page was last edited on 30 March 2013, at 04:46 (UTC). Text is available under the Creative Commons Attribution-ShareAlike 4.0 ...
A hidden Markov model describes the joint probability of a collection of "hidden" and observed discrete random variables.It relies on the assumption that the i-th hidden variable given the (i − 1)-th hidden variable is independent of previous hidden variables, and the current observation variables depend only on the current hidden state.
Example of a hidden Markov model. Kurzweil next writes about creating a digital brain inspired by the biological brain he has been describing. One existing effort he points to is Henry Markram's Blue Brain Project, which is attempting to create a full brain simulation by 2023. [25]
Gauss–Markov process (cf. below) GenI process; Girsanov's theorem; Hawkes process; Homogeneous processes: processes where the domain has some symmetry and the finite-dimensional probability distributions also have that symmetry. Special cases include stationary processes, also called time-homogeneous. Karhunen–Loève theorem; Lévy process