Search results
Results from the WOW.Com Content Network
The Vienna Ab initio Simulation Package, better known as VASP, is a package written primarily in Fortran for performing ab initio quantum mechanical calculations using either Vanderbilt pseudopotentials, or the projector augmented wave method, and a plane wave basis set. [2]
The projector augmented wave method (PAW) is a technique used in ab initio electronic structure calculations. It is a generalization of the pseudopotential and linear augmented-plane-wave methods, and allows for density functional theory calculations to be performed with greater computational efficiency.
The Gaussian and Augmented Plane Waves method (GAPW) as an extension of the GPW method allows for all-electron calculations. CP2K can do simulations of molecular dynamics, metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, energy minimization, and transition state optimization using NEB or dimer method.
The linearized augmented-plane-wave method (LAPW) is an implementation of Kohn-Sham density functional theory (DFT) adapted to periodic materials. [1] [2] [3] It typically goes along with the treatment of both valence and core electrons on the same footing in the context of DFT and the treatment of the full potential and charge density without any shape approximation.
SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is an original method and its computer program implementation, to efficiently perform electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids.
Quantum lambda calculi are extensions of the classical lambda calculus introduced by Alonzo Church and Stephen Cole Kleene in the 1930s. The purpose of quantum lambda calculi is to extend quantum programming languages with a theory of higher-order functions. The first attempt to define a quantum lambda calculus was made by Philip Maymin in 1996 ...
Superpositions of quantum states can be easily represented, encrypted, transmitted and detected using photons. Besides, linear optical elements of optical systems may be the simplest building blocks to realize quantum operations and quantum gates. Each linear optical element equivalently applies a unitary transformation on a finite number of ...
In quantum computing, Grover's algorithm, also known as the quantum search algorithm, is a quantum algorithm for unstructured search that finds with high probability the unique input to a black box function that produces a particular output value, using just () evaluations of the function, where is the size of the function's domain.