enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.

  3. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection distance of a member under a load can be calculated by integrating the function that mathematically describes the slope of the deflected shape of the member under that load. Standard formulas exist for the deflection of common beam configurations and load cases at discrete locations.

  4. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Euler–Bernoulli beam theory can also be extended to the analysis of curved beams, beam buckling, composite beams, and geometrically nonlinear beam deflection. Euler–Bernoulli beam theory does not account for the effects of transverse shear strain. As a result, it underpredicts deflections and overpredicts natural frequencies.

  5. Moment-area theorem - Wikipedia

    en.wikipedia.org/wiki/Moment-Area_Theorem

    The moment-area theorem is an engineering tool to derive the slope, rotation and deflection of beams and frames. This theorem was developed by Mohr and later stated namely by Charles Ezra Greene in 1873.

  6. Direct integration of a beam - Wikipedia

    en.wikipedia.org/wiki/Direct_integration_of_a_beam

    Simply supported beam with a constant 10 kN per meter load over a 15m length. Take the beam shown at right supported by a fixed pin at the left and a roller at the right. There are no applied moments, the weight is a constant 10 kN, and - due to symmetry - each support applies a 75 kN vertical force to the beam. Taking x as the distance from ...

  7. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The bending moment at a particular cross section varies linearly with the second derivative of the deflected shape at that location. The beam is composed of an isotropic material. The applied load is orthogonal to the beam's neutral axis and acts in a unique plane. A simplified version of Euler–Bernoulli beam equation is:

  8. Moment distribution method - Wikipedia

    en.wikipedia.org/wiki/Moment_distribution_method

    The bending stiffness (EI/L) of a member is represented as the flexural rigidity of the member (product of the modulus of elasticity (E) and the second moment of area (I)) divided by the length (L) of the member. What is needed in the moment distribution method is not the specific values but the ratios of bending stiffnesses between all members.

  9. Theorem of three moments - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_three_moments

    The deflection downward positive. (Downward settlement positive) Let ABC is a continuous beam with support at A,B, and C. Then moment at A,B, and C are M1, M2, and M3, respectively. Let A' B' and C' be the final positions of the beam ABC due to support settlements. Figure 04-Deflection Curve of a Continuous Beam Under Settlement