enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    A high sample complexity means that many calculations are needed for running a Monte Carlo tree search. [10] It is equivalent to a model-free brute force search in the state space. In contrast, a high-efficiency algorithm has a low sample complexity. [11]

  3. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    In particular, the learner is expected to find efficient functions (time and space requirements bounded to a polynomial of the example size), and the learner itself must implement an efficient procedure (requiring an example count bounded to a polynomial of the concept size, modified by the approximation and likelihood bounds).

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  5. Smoothed analysis - Wikipedia

    en.wikipedia.org/wiki/Smoothed_analysis

    In theoretical computer science, smoothed analysis is a way of measuring the complexity of an algorithm. Since its introduction in 2001, smoothed analysis has been used as a basis for considerable research, for problems ranging from mathematical programming , numerical analysis , machine learning , and data mining . [ 1 ]

  6. Computational complexity - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity

    Therefore, the time complexity, generally called bit complexity in this context, may be much larger than the arithmetic complexity. For example, the arithmetic complexity of the computation of the determinant of a n × n integer matrix is O ( n 3 ) {\displaystyle O(n^{3})} for the usual algorithms ( Gaussian elimination ).

  7. Space complexity - Wikipedia

    en.wikipedia.org/wiki/Space_complexity

    The term auxiliary space refers to space other than that consumed by the input. Auxiliary space complexity could be formally defined in terms of a Turing machine with a separate input tape which cannot be written to, only read, and a conventional working tape which can be written to. The auxiliary space complexity is then defined (and analyzed ...

  8. Vapnik–Chervonenkis dimension - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis...

    For example, consider the thresholding of a high-degree polynomial: if the polynomial evaluates above zero, that point is classified as positive, otherwise as negative. A high-degree polynomial can be wiggly, so it can fit a given set of training points well.

  9. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...