Search results
Results from the WOW.Com Content Network
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Redox (/ ˈ r ɛ d ɒ k s / RED-oks, / ˈ r iː d ɒ k s / REE-doks, reduction–oxidation [2] or oxidation–reduction [3]: 150 ) is a type of chemical reaction in which the oxidation states of the reactants change. [4]
In reactions involving donation of a hydrogen atom, oxygen is reduced to water (H 2 O) or hydrogen peroxide (H 2 O 2). Some oxidation reactions, such as those involving monoamine oxidase or xanthine oxidase, typically do not involve free molecular oxygen. [1] [2] The oxidases are a subclass of the oxidoreductases. The use of dioxygen is the ...
For example, an enzyme that catalyzed this reaction would be an oxidoreductase: A – + B → A + B – In this example, A is the reductant (electron donor) and B is the oxidant (electron acceptor). In biochemical reactions, the redox reactions are sometimes more difficult to see, such as this reaction from glycolysis:
Examples of substances that are common reducing agents include hydrogen, carbon monoxide, the alkali metals, formic acid, [1] oxalic acid, [2] and sulfite compounds. In their pre-reaction states, reducers have extra electrons (that is, they are by themselves reduced) and oxidizers lack electrons (that is, they are by themselves oxidized).
Four varieties are recognized by the International Union of Biochemistry and Molecular Biology (IUBMB), cytochromes a, cytochromes b, cytochromes c and cytochrome d. [1] Cytochrome function is linked to the reversible redox change from ferrous (Fe(II)) to the ferric (Fe(III)) oxidation state of the iron found in the heme core. [2]
Example of a reduction–oxidation reaction between sodium and chlorine, with the OIL RIG mnemonic [1] Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET
Organic redox reactions: the Birch reduction. Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds.In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. [1]
An E h of zero represents the redox couple of the standard hydrogen electrode H + /H 2, [8] a positive E h indicates an oxidizing environment (electrons will be accepted), and a negative E h indicates a reducing environment (electrons will be donated). [1] In a redox gradient, the most energetically favorable chemical reaction occurs at the ...