Search results
Results from the WOW.Com Content Network
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
The lactose operon (lac operon) is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria.Although glucose is the preferred carbon source for most enteric bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of β-galactosidase. [1]
The glnALG operon is an operon that regulates the nitrogen content of a cell. It codes for the structural gene glnA the two regulatory genes glnL and glnG. glnA encodes glutamine synthetase, an enzyme which catalyzes the conversion of glutamate and ammonia to glutamine, thereby controlling the nitrogen level in the cell. glnG encodes NR I which regulates the expression of the glnALG operon at ...
The gal operon contains two operators, O E (for external) and O I (for internal). The former is just upstream of the promoter, and the latter is just after the galE gene (the first gene in the operon). These operators bind the repressor, GalR, which is encoded from outside the operator region. For this repressor protein to function properly ...
The nik operon is an operon required for uptake of nickel ions into the cell. It is present in many bacteria, but has been extensively studied in Helicobacter pylori. Nickel is an essential nutrient for many microorganisms, where it participates in a variety of cellular processes. However, excessive levels of nickel ions in cell can be fatal to ...
This operon is an example of repressible negative regulation of gene expression. The repressor protein binds to the operator in the presence of tryptophan (repressing transcription ) and is released from the operon when tryptophan is absent (allowing transcription to proceed).
This page was last edited on 8 September 2018, at 01:24 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Therefore, the rest of the operon will be transcribed and translated, so that tryptophan can be produced. Thus, domain 4 is an attenuator. Without domain 4, translation can continue regardless of the level of tryptophan. [9] The attenuator sequence has its codons translated into a leader peptide, but is not part of the trp operon gene sequence.