Search results
Results from the WOW.Com Content Network
Depending on the solute and range of concentration, an aqueous electrolyte solution can have either a larger or smaller viscosity compared with pure water at the same temperature and pressure. For instance, a 20% saline ( sodium chloride ) solution has viscosity over 1.5 times that of pure water, whereas a 20% potassium iodide solution has ...
In liquids, viscous forces are caused by molecules exerting attractive forces on each other across layers of flow. Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together.
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The sudden application of force—by stabbing the surface with a finger, for example, or rapidly inverting the container holding it—causes the fluid to behave like a solid rather than a liquid. This is the " shear thickening " property of this non-Newtonian fluid.
The school experiment uses glycerine or golden syrup as the fluid, and the technique is used industrially to check the viscosity of fluids used in processes. Several school experiments often involve varying the temperature and/or concentration of the substances used in order to demonstrate the effects this has on the viscosity.
Although the standard concentration c° is taken to be 1 mol/L by convention, the standard state is a hypothetical solution of 1 mol/L in which the solute has its limiting infinite-dilution properties. This has the effect that all non-ideal behavior is described by the activity coefficient: the activity coefficient at 1 mol/L is not necessarily ...
The same goes for shear viscosity. For a Newtonian fluid the shear viscosity is a pure fluid property, but for a non-Newtonian fluid it is not a pure fluid property due to its dependence on the velocity gradient. Neither shear nor volume viscosity are equilibrium parameters or properties, but transport properties.