Search results
Results from the WOW.Com Content Network
Capital adequacy ratio is the ratio which determines the bank's capacity to meet the time liabilities and other risks such as credit risk, operational risk etc. In the most simple formulation, a bank's capital is the "cushion" for potential losses, and protects the bank's depositors and other lenders.
In physics, Peek's law defines the electric potential gap necessary for triggering a corona discharge between two wires: = e v is the "visual critical corona voltage" or "corona inception voltage" (CIV), the voltage required to initiate a visible corona discharge between the wires.
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions. Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg , where F is the force exerted on a mass m by the Earth's gravitational field of strength g .
For two-dimensional, plane strain problems the strain-displacement relations are = ; = [+] ; = Repeated differentiation of these relations, in order to remove the displacements and , gives us the two-dimensional compatibility condition for strains
As shown in the equations above, the use of the von Mises criterion as a yield criterion is only exactly applicable when the following material properties are isotropic, and the ratio of the shear yield strength to the tensile yield strength has the following value: [10]