Search results
Results from the WOW.Com Content Network
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...
The combinatorial interpretation of multinomial coefficients is distribution of n distinguishable elements over r (distinguishable) containers, each containing exactly k i elements, where i is the index of the container. Multinomial coefficients have many properties similar to those of binomial coefficients, for example the recurrence relation:
In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients.It states that for positive natural numbers n and k, + = (), where () is a binomial coefficient; one interpretation of the coefficient of the x k term in the expansion of (1 + x) n.
In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.
where the above convention for the coefficients of the polynomials agrees with the definition of the binomial coefficients, because both give zero for all i > m and j > n, respectively. By comparing coefficients of x r, Vandermonde's identity follows for all integers r with 0 ≤ r ≤ m + n.
An R package poibin was provided along with the paper, [13] which is available for the computing of the cdf, pmf, quantile function, and random number generation of the Poisson binomial distribution. For computing the PMF, a DFT algorithm or a recursive algorithm can be specified to compute the exact PMF, and approximation methods using the ...
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence of n independent experiments, each asking a yes–no question, and each with its own Boolean-valued outcome: success (with probability p) or failure (with probability q = 1 − p).
Binomial regression is closely connected with binary regression. If the response is a binary variable (two possible outcomes), then these alternatives can be coded as 0 or 1 by considering one of the outcomes as "success" and the other as "failure" and considering these as count data : "success" is 1 success out of 1 trial, while "failure" is 0 ...