enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    Constraints can be either hard constraints, which set conditions for the variables that are required to be satisfied, or soft constraints, which have some variable values that are penalized in the objective function if, and based on the extent that, the conditions on the variables are not satisfied.

  3. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    The Frank–Wolfe algorithm is an iterative first-order optimization algorithm for constrained convex optimization.Also known as the conditional gradient method, [1] reduced gradient algorithm and the convex combination algorithm, the method was originally proposed by Marguerite Frank and Philip Wolfe in 1956. [2]

  4. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  6. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  7. Fritz John conditions - Wikipedia

    en.wikipedia.org/wiki/Fritz_John_conditions

    where ƒ is the function to be minimized, the inequality constraints and the equality constraints, and where, respectively, , and are the indices sets of inactive, active and equality constraints and is an optimal solution of , then there exists a non-zero vector = [,,, …,] such that:

  8. Barrier function - Wikipedia

    en.wikipedia.org/wiki/Barrier_function

    minimize f(x) subject to x ≤ b. where b is some constant. If one wishes to remove the inequality constraint, the problem can be reformulated as minimize f(x) + c(x), where c(x) = ∞ if x > b, and zero otherwise. This problem is equivalent to the first.

  9. Drift plus penalty - Wikipedia

    en.wikipedia.org/wiki/Drift_plus_penalty

    This constraint is written in standard form by defining a new penalty function y(t) = a(t) − b(t). The above problem seeks to minimize the time average of an abstract penalty function p'(t)'. This can be used to maximize the time average of some desirable reward function r(t) by defining p(t) = −r('t).