Ads
related to: forward biased diode and reverse
Search results
Results from the WOW.Com Content Network
Nonideal p–n diode current-voltage characteristics. The ideal diode has zero resistance for the forward bias polarity, and infinite resistance (conducts zero current) for the reverse voltage polarity; if connected in an alternating current circuit, the semiconductor diode acts as an electrical rectifier.
A silicon p–n junction in reverse bias. Connecting the p-type region to the negative terminal of the voltage supply and the n-type region to the positive terminal corresponds to reverse bias. If a diode is reverse-biased, the voltage at the cathode is comparatively higher than at the anode. Therefore, very little current flows until the diode ...
Under reverse bias, the diode equation's exponential term is near 0, so the current is near the somewhat constant reverse current value (roughly a picoampere for silicon diodes or a microampere for germanium diodes, [1] although this is obviously a function of size).
Current–voltage characteristic of a p–n junction diode showing three regions: breakdown, reverse biased, forward biased. The exponential's "knee" is at V d. The leveling off region which occurs at larger forward currents is not shown. A diode's current–voltage characteristic can be approximated by four operating regions. From lower to ...
Forward-biased diodes have low impedance approximating a short circuit with a small voltage drop, while reverse-biased diodes have a very high impedance approximating an open circuit. The diode symbol's arrow shows the forward-biased direction of conventional current flow.
A PN junction in forward bias mode, the depletion width decreases. Both p and n junctions are doped at a 1e15/cm3 doping level, leading to built-in potential of ~0.59V. Observe the different Quasi Fermi levels for conduction band and valence band in n and p regions (red curves). A depletion region forms instantaneously across a p–n junction.
Ads
related to: forward biased diode and reverse