Search results
Results from the WOW.Com Content Network
The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.
In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is A X A H − X + Q = 0 {\displaystyle AXA^{H}-X+Q=0} where Q {\displaystyle Q} is a Hermitian matrix and A H {\displaystyle A^{H}} is the conjugate transpose of A {\displaystyle A} , while the continuous-time Lyapunov equation is
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
Lyapunov functions are used extensively in control theory to ensure different forms of system stability. The state of a system at a particular time is often described by a multi-dimensional vector. A Lyapunov function is a nonnegative scalar measure of this multi-dimensional state.
In stability theory and nonlinear control, Massera's lemma, named after José Luis Massera, deals with the construction of the Lyapunov function to prove the stability of a dynamical system. [1] The lemma appears in (Massera 1949, p. 716) as the first lemma in section 12, and in more general form in (Massera 1956, p. 195) as lemma 2. In 2004 ...
The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.
Comparison functions are primarily used to obtain quantitative restatements of stability properties as Lyapunov stability, uniform asymptotic stability, etc. These restatements are often more useful than the qualitative definitions of stability properties given in ε - δ {\displaystyle \varepsilon {\text{-}}\delta } language.