Search results
Results from the WOW.Com Content Network
[4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.
This includes pressure inlet and outlet conditions mainly. Typical examples that utilize this boundary condition include buoyancy driven flows, internal flows with multiple outlets, free surface flows and external flows around objects. [1] An example is flow outlet into atmosphere where pressure is atmospheric.
This means that the generally inferior flow of a reverse-flow head is less of a disadvantage. In the early days of turbo charging a reverse-flow head allowed the compressor outlet of a turbocharger to blow directly into the inlet manifold with either a blow-through or draw-through carburettor and no intercooler. This allowed the use of shorter ...
A crossflow head gives better performance than a Reverse-flow cylinder head (though not as good as a uniflow), but the popular explanation put forward for this — that the gases do not have to change direction and hence are moved into and out of the cylinder more efficiently — is a simplification since there is no continuous flow because of valve opening and closing.
Reverse flow may refer to: In engine technology a reverse flow cylinder head is one that locates the intake and exhaust ports on the same side of the engine. Reverse logistics, i.e. goods/waste flowing in the distribution network having consumers as point of origin; Reverse electron flow is a mechanism in microbial metabolism
In thermodynamics, a reversible process is a process, involving a system and its surroundings, whose direction can be reversed by infinitesimal changes in some properties of the surroundings, such as pressure or temperature. [1] [2] [3]
The engine's design is unusual; the core flow path is reversed twice. Aft of the fan, the axial compressor has five stages, after which the gas path progresses to the aft end of the engine. There, it is reversed to flow through a centrifugal compressor stage, the combustors and then the turbine stages.
Thus, the adverse pressure gradient could not be suppressed by the compressor and the system would rapidly involve an overshoot of adverse pressure gradient which would dramatically reduce the mass flow rate or even cause flows to reverse. On the other hand, the pressure in the reservoir would gradually drop due to less flux delivered by the ...