Search results
Results from the WOW.Com Content Network
Decarboxylation is a chemical reaction that removes a carboxyl group and releases carbon dioxide (CO 2). Usually, decarboxylation refers to a reaction of carboxylic acids, removing a carbon atom from a carbon chain. The reverse process, which is the first chemical step in photosynthesis, is called carboxylation, the addition of CO 2 to a
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.
The main carboxylating enzyme in C 3 photosynthesis is called RuBisCO, which catalyses two distinct reactions using either CO 2 (carboxylation) or oxygen (oxygenation) as a substrate. RuBisCO oxygenation gives rise to phosphoglycolate , which is toxic and requires the expenditure of energy to recycle through photorespiration .
Carbon on Earth naturally occurs in two stable isotopes, with 98.9% in the form of 12 C and 1.1% in 13 C. [1] [8] The ratio between these isotopes varies in biological organisms due to metabolic processes that selectively use one carbon isotope over the other, or "fractionate" carbon through kinetic or thermodynamic effects. [1]
Light micrograph of a moss's leaf cells at 400X magnification. The following outline is provided as an overview of and topical guide to cell biology: . Cell biology – A branch of biology that includes study of cells regarding their physiological properties, structure, and function; the organelles they contain; interactions with their environment; and their life cycle, division, and death.
Light-dependent reactions of photosynthesis at the thylakoid membrane Photosystems are functional and structural units of protein complexes involved in photosynthesis . Together they carry out the primary photochemistry of photosynthesis : the absorption of light and the transfer of energy and electrons .
S and N in organic carbon source are transformed into H 2 S and NH 4 + through desulfurylation and deamination, respectively. [40] [39] Heterotrophs also allow for dephosphorylation as part of decomposition. [39] The conversion of N and S from organic form to inorganic form is a critical part of the nitrogen and sulfur cycle.
Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.