Search results
Results from the WOW.Com Content Network
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
Examples of intensive properties include temperature, T; refractive index, n; density, ρ; and hardness, η. By contrast, an extensive property or extensive quantity is one whose magnitude is additive for subsystems. [4] Examples include mass, volume and entropy. [5] Not all properties of matter fall into these two categories.
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings.One such equation involves the enthalpy change, which is denoted with In variable form, a thermochemical equation would appear similar to the following:
where ln denotes the natural logarithm, is the thermodynamic equilibrium constant, and R is the ideal gas constant.This equation is exact at any one temperature and all pressures, derived from the requirement that the Gibbs free energy of reaction be stationary in a state of chemical equilibrium.
The standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions.A degree sign (°) or a superscript Plimsoll symbol (⦵) is used to designate a thermodynamic quantity in the standard state, such as change in enthalpy (ΔH°), change in entropy (ΔS°), or change in Gibbs free energy (ΔG°).
The enthalpy of solution is most often expressed in kJ/mol at constant temperature. The energy change can be regarded as being made up of three parts: the endothermic breaking of bonds within the solute and within the solvent, and the formation of attractions between the solute and the solvent.
During the early 20th century, two major publications successfully applied the principles developed by Gibbs to chemical processes and thus established the foundation of the science of chemical thermodynamics. The first was the 1923 textbook Thermodynamics and the Free Energy of Chemical Substances by Gilbert N. Lewis and Merle Randall.
The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...