enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Paper bag problem - Wikipedia

    en.wikipedia.org/wiki/Paper_bag_problem

    A cushion filled with stuffing. In geometry, the paper bag problem or teabag problem is to calculate the maximum possible inflated volume of an initially flat sealed rectangular bag which has the same shape as a cushion or pillow, made out of two pieces of material which can bend but not stretch.

  3. List of formulas in elementary geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Perimeter#Formulas – Path that surrounds an area; List of second moments of area; List of surface-area-to-volume ratios – Surface area per unit volume; List of surface area formulas – Measure of a two-dimensional surface; List of trigonometric identities; List of volume formulas – Quantity of three-dimensional space

  4. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    An a × b rectangle can be packed with 1 × n strips if and only if n divides a or n divides b. [ 15 ] [ 16 ] de Bruijn's theorem : A box can be packed with a harmonic brick a × a b × a b c if the box has dimensions a p × a b q × a b c r for some natural numbers p , q , r (i.e., the box is a multiple of the brick.) [ 15 ]

  5. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    The rectangular cuboid (six rectangular faces), cube ... A formula to compute the volume of an n-parallelotope P in , whose n + 1 vertices are ,, ...

  6. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    The formula for the volume of a pyramidal square frustum was introduced by the ancient Egyptian mathematics in what is called the Moscow Mathematical Papyrus, written in the 13th dynasty (c. 1850 BC): = (+ +), where a and b are the base and top side lengths, and h is the height.

  7. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    The formula for the magnitude of the solid angle in steradians is Ω = A r 2 , {\displaystyle \Omega ={\frac {A}{r^{2}}},} where A {\displaystyle A} is the area (of any shape) on the surface of the sphere and r {\displaystyle r} is the radius of the sphere.

  8. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.

  9. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus