enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Wien's_displacement_law

    Blacksmiths work iron when it is hot enough to emit plainly visible thermal radiation. The color of a star is determined by its temperature, according to Wien's law. In the constellation of Orion, one can compare Betelgeuse (T ≈ 3800 K, upper left), Rigel (T = 12100 K, bottom right), Bellatrix (T = 22000 K, upper right), and Mintaka (T = 31800 K, rightmost of the 3 "belt stars" in the middle).

  3. Wien approximation - Wikipedia

    en.wikipedia.org/wiki/Wien_approximation

    Comparison of Wien’s curve and the Planck curve. Wien's approximation (also sometimes called Wien's law or the Wien distribution law) is a law of physics used to describe the spectrum of thermal radiation (frequently called the blackbody function). This law was first derived by Wilhelm Wien in 1896.

  4. Wien's law - Wikipedia

    en.wikipedia.org/wiki/Wien's_law

    Wien's law or Wien law may refer to: . Wien approximation, an equation used to describe the short-wavelength (high frequency) spectrum of thermal radiation; Wien's displacement law, an equation that describes the relationship between the temperature of an object and the peak wavelength or frequency of the emitted light

  5. Wilhelm Wien - Wikipedia

    en.wikipedia.org/wiki/Wilhelm_Wien

    Wilhelm Carl Werner Otto Fritz Franz Wien (German: [ˈvɪlhɛlm ˈviːn] ⓘ; 13 January 1864 – 30 August 1928) was a German physicist who, in 1893, used theories about heat and electromagnetism to deduce Wien's displacement law, which calculates the emission of a blackbody at any temperature from the emission at any one reference temperature.

  6. Rayleigh–Jeans law - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Jeans_law

    Comparison of Rayleigh–Jeans law with Wien approximation and Planck's law, for a body of 5800 K temperature.. In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments.

  7. File:Wien's Displacement Law Variations Chart.svg - Wikipedia

    en.wikipedia.org/wiki/File:Wien's_Displacement...

    For different versions of the law, the proportionality constant differs—so, for a given temperature, there is no unique characteristic wavelength or frequency. The chart plots the peak of the Planck luminosity curve when it is plotted on a per wavelength basis ("peak wavelength"), on a per frequency basis ("peak frequency"), or on a per log ...

  8. List of scientific laws named after people - Wikipedia

    en.wikipedia.org/wiki/List_of_scientific_laws...

    Wien's law: Physics: Wilhelm Wien: Wiener–Khinchin theorem: Mathematics: Norbert Wiener and Aleksandr Khinchin: Young–Laplace equation: Fluid dynamics: Thomas Young and Pierre-Simon Laplace: Zener-Hollomon law: Physics: Clarence Zener and John Herbert Hollomon: Zipf's law: Linguistics: George Kingsley Zipf

  9. Talk:Wien's displacement law - Wikipedia

    en.wikipedia.org/wiki/Talk:Wien's_displacement_law

    Wien's displacement law (the relationship between spectra at different temperatures) is generally true. Wien's distribution law (which attempts to predict the form of the spectrum) is only right for high frequencies, which is why it's generally referred to as the Wien approximation. There is a link to the latter in the lead section of this ...