Search results
Results from the WOW.Com Content Network
Drag and lift coefficients for the NACA 63 3 618 airfoil. Full curves are lift, dashed drag; red curves have R e = 3·10 6, blue 9·10 6. Coefficients of lift and drag against angle of attack. Curve showing induced drag, parasitic drag and total drag as a function of airspeed. Drag curve for the NACA 63 3 618 airfoil, colour-coded as opposite plot.
Trim drag, denoted as Dm in the diagram, is the component of aerodynamic drag on an aircraft created by the flight control surfaces, [1] mainly elevators and trimable horizontal stabilizers, when they are used to offset changes in pitching moment and centre of gravity during flight.
[15] [16] Modifications which included indenting the fuselage beside the wings and adding more volume to the rear of the aircraft, reduced the transonic drag significantly and the Mach 1.2 design speed was reached. The reason for using the area rule on these fighter aircraft was to reduce the peak value of the drag which occurs at Mach 1 and so ...
The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.
There are two causes of aerodynamic force: [1]: §4.10 [2] [3]: 29 the normal force due to the pressure on the surface of the body; the shear force due to the viscosity of the gas, also known as skin friction. Pressure acts normal to the surface, and shear force acts parallel to the surface. Both forces act locally.
Concorde had a lift/drag ratio of about 7 at Mach 2, whereas a 747 has about 17 at about mach 0.85. Dietrich Küchemann developed an empirical relationship for predicting L/D ratio for high Mach numbers: [8] / = (+), where M is the Mach number. Windtunnel tests have shown this to be approximately accurate.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An aircraft is streamlined from nose to tail to reduce drag making it advantageous to keep the sideslip angle near zero, though an aircraft may be deliberately "sideslipped" to increase drag and descent rate during landing, to keep aircraft heading same as runway heading during cross-wind landings and during flight with asymmetric power.