Search results
Results from the WOW.Com Content Network
The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System (as well as other planetary systems). It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets.
This nebula was also observed by Johann Baptist Cysat in 1618. However, the first detailed study of the Orion Nebula was not performed until 1659 by Christiaan Huygens, who also believed he was the first person to discover this nebulosity. [11] In 1715, Edmond Halley published a list of six nebulae.
The nebular hypothesis says that the Solar System formed from the gravitational collapse of a fragment of a giant molecular cloud, [9] most likely at the edge of a Wolf-Rayet bubble. [10] The cloud was about 20 parsecs (65 light years) across, [ 9 ] while the fragments were roughly 1 parsec (three and a quarter light-years ) across. [ 11 ]
A major difficulty was that, in this supposition, turbulent dissipation took place over the course of a single millennium, which did not give enough time for planets to form. The nebular hypothesis was first proposed in 1734 by Swedish scientist Emanuel Swedenborg [6] and later expanded upon by Prussian philosopher Immanuel Kant in 1755.
It was proposed as a replacement for the Laplacian version of the nebular hypothesis that had prevailed since the 19th century. The hypothesis was based on the idea that a star passed close enough to the sun early in its life to cause tidal bulges to form on its surface, which along with the internal process that leads to solar prominences ...
In cosmogony, the nebular hypothesis is the most widely accepted model explaining the formation and evolution of the Solar System. It was first proposed in 1734 by Emanuel Swedenborg . Originally applied only to our own Solar System , this method of planetary system formation is now thought to be at work throughout the universe .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
About 4.5 Ga, the nebula began a contraction that may have been triggered by the shock wave from a nearby supernova. [23] A shock wave would have also made the nebula rotate. As the cloud began to accelerate, its angular momentum, gravity, and inertia flattened it into a protoplanetary disk perpendicular to its axis of rotation.