enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    The sine function and all of its Taylor polynomials are odd functions. The cosine function and all of its Taylor polynomials are even functions.. In mathematics, an even function is a real function such that () = for every in its domain.

  3. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.

  4. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that ...

  5. Sine and cosine transforms - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine_transforms

    Odd functions are unchanged if rotated 180 degrees about the origin. Their cosine transform is entirely zero. The above odd function contains two half-sized time-shifted Dirac delta functions. Its sine transform is simply ⁡ (). Likewise, the sine transform of ⁡ is the above plot.

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  7. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    The sinc function for a non-Cartesian lattice (e.g., hexagonal lattice) is a function whose Fourier transform is the indicator function of the Brillouin zone of that lattice. For example, the sinc function for the hexagonal lattice is a function whose Fourier transform is the indicator function of the unit hexagon in the frequency space. For a ...

  8. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    The Fourier transform, () (in blue), which depicts amplitude vs frequency, reveals the 6 frequencies (at odd harmonics) and their amplitudes (1/odd number). The sine and cosine functions are fundamental to the theory of periodic functions, [63] such as those that describe sound and light waves.

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...