Search results
Results from the WOW.Com Content Network
Classes are reference types and structs are value types. A structure is allocated on the stack when it is declared and the variable is bound to its address. It directly contains the value. Classes are different because the memory is allocated as objects on the heap. Variables are rather managed pointers on the stack which point to the objects.
Value types (such as int, double, etc.) are created in a sequential structure called the "stack". VB .NET and C# also allow the use of the new operator to create value type objects, but these value type objects are created on the stack regardless of whether the operator is used or not.
As a precursor to the lambda functions introduced in C# 3.0, C#2.0 added anonymous delegates. These provide closure-like functionality to C#. [3] Code inside the body of an anonymous delegate has full read/write access to local variables, method parameters, and class members in scope of the delegate, excepting out and ref parameters.
Tuples – .NET Framework 4.0 but it becomes popular when C# 7.0 introduced a new tuple type with language support [104] Nested functions – C# 7.0 [104] Pattern matching – C# 7.0 [104] Immutability – C# 7.2 readonly struct C# 9 record types [105] and Init only setters [106] Type classes – C# 12 roles/extensions (in development [107])
On the other hand, C# has no primitive wrapper classes, but allows boxing of any value type, returning a generic Object reference. In Objective-C, any primitive value can be prefixed by a @ to make an NSNumber out of it (e.g. @123 or @(123)). This allows for adding them in any of the standard collections, such as an NSArray.
A new pseudo-type dynamic is introduced into the C# type system. It is treated as System.Object, but in addition, any member access (method call, field, property, or indexer access, or a delegate invocation) or application of an operator on a value of such type is permitted without any type checking, and its resolution is postponed until run-time.
Composition over inheritance (or composite reuse principle) in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition (by containing instances of other classes that implement the desired functionality) over inheritance from a base or parent class. [2]
Public Class Student Private _name As String Public Property Name Get Return _name End Get Set (ByVal value) _name = value End Set End Property End Class In VB.NET 2010, Auto Implemented properties can be utilized to create a property without having to use the Get and Set syntax.