Search results
Results from the WOW.Com Content Network
Min-Conflicts solves the N-Queens Problem by selecting a column from the chess board for queen reassignment. The algorithm searches each potential move for the number of conflicts (number of attacking queens), shown in each square. The algorithm moves the queen to the square with the minimum number of conflicts, breaking ties randomly.
Nauck also extended the puzzle to the n queens problem, with n queens on a chessboard of n×n squares. Since then, many mathematicians, including Carl Friedrich Gauss, have worked on both the eight queens puzzle and its generalized n-queens version. In 1874, S. Günther proposed a method using determinants to find solutions. [1]
The N queens problem is the problem of placing n chess queens on an n×n chessboard so that no two queens threaten each other. A solution requires that no two queens share the same row, column, or diagonal. It is an example of a generalized exact cover problem. [5]
Some of the better-known exact cover problems include tiling, the n queens problem, and Sudoku. The name dancing links , which was suggested by Donald Knuth , stems from the way the algorithm works, as iterations of the algorithm cause the links to "dance" with partner links so as to resemble an "exquisitely choreographed dance."
A mathematical chess problem is a mathematical problem which is formulated using a chessboard and chess pieces. These problems belong to recreational mathematics . The most well-known problems of this kind are the eight queens puzzle and the knight's tour problem, which have connection to graph theory and combinatorics .
This page was last edited on 10 December 2005, at 09:48 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
For example, consider the n-queens problem, where the goal is to place n chess queens on an n-by-n chessboard such that none of the queens can attack each other (horizontally, vertically, or diagonally). The formal set of constraints are therefore "Queen 1 can't attack Queen 2", "Queen 1 can't attack Queen 3", and so on between all pairs of queens.