Search results
Results from the WOW.Com Content Network
Equivalently, a quadrilateral has equal diagonals if and only if it has perpendicular bimedians, and it has perpendicular diagonals if and only if it has equal bimedians. [7] Silvester (2006) gives further connections between equidiagonal and orthodiagonal quadrilaterals, via a generalization of van Aubel's theorem. [8]
This follows from the Pythagorean theorem, by which either of these two sums of two squares can be expanded to equal the sum of the four squared distances from the quadrilateral's vertices to the point where the diagonals intersect. Conversely, any quadrilateral in which a 2 + c 2 = b 2 + d 2 must be orthodiagonal. [4]
Two pairs of opposite angles are equal in measure. The diagonals bisect each other. One pair of opposite sides is parallel and equal in length. Adjacent angles are supplementary. Each diagonal divides the quadrilateral into two congruent triangles. The sum of the squares of the sides equals the sum of the squares of the diagonals. (This is the ...
Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
In the following table it is listed if the diagonals in some of the most basic quadrilaterals bisect each other, if their diagonals are perpendicular, and if their diagonals have equal length. [26] The list applies to the most general cases, and excludes named subsets.
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.