Search results
Results from the WOW.Com Content Network
The heat transfer coefficient is the reciprocal of thermal insulance. This is used for building materials and for clothing insulation. There are numerous methods for calculating the heat transfer coefficient in different heat transfer modes, different fluids, flow regimes, and under different thermohydraulic conditions.
In manufacturing, glass-ceramics are valued for having the strength of ceramic but the hermetic sealing properties of glass. Glass-ceramics are mostly produced in two steps: First, a glass is formed by a glass-manufacturing process, after which the glass is cooled down. Second, the glass is put through a controlled heat treatment schedule.
Broadly, modern glass container factories are three-part operations: the "batch house", the "hot end", and the "cold end". The batch house handles the raw materials; the hot end handles the manufacture proper—the forehearth, forming machines, and annealing ovens; and the cold end handles the product-inspection and packaging equipment.
The combustion temperature, and therefore the heat transfer, is higher and the volume of gas to be heated is lower. However, oxygen-fired glass furnaces are usually not viable for the production of bulk glass, such as hollow and flat glass, due to the high cost of oxygen production. There are many different types of glass melting furnaces.
Q is the exchanged heat duty , U is the heat transfer coefficient (watts per kelvin per square meter), A is the exchange area. Note that estimating the heat transfer coefficient may be quite complicated. This holds both for cocurrent flow, where the streams enter from the same end, and for countercurrent flow, where they enter from different ends.
This equation shows that the temperature decreases exponentially over time, with the rate governed by the properties of the material and the heat transfer coefficient. [7] The heat transfer coefficient, h, is measured in , and represents the transfer of heat at an interface between two materials. This value is different at every interface and ...
h = film coefficient or heat transfer coefficient or convective heat transfer coefficient, L C = characteristic length, which is commonly defined as the volume of the body divided by the surface area of the body, such that = /, k b = thermal conductivity of the body.
The breakthrough in large, mass-produced, continuous glass production happened in the 1950s with the development of the Float glass manufacturing process. Molten glass is poured over a surface of molten tin, where it flattens out and can be drawn off in a ribbon.