enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  3. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    In machine learning, reinforcement learning from human feedback (RLHF) is a technique to align an intelligent agent with human preferences. It involves training a reward model to represent preferences, which can then be used to train other models through reinforcement learning .

  4. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...

  5. Curriculum learning - Wikipedia

    en.wikipedia.org/wiki/Curriculum_learning

    It is frequently combined with reinforcement learning, such as learning a simplified version of a game first. [12] Some domains have shown success with anti-curriculum learning: training on the most difficult examples first. One example is the ACCAN method for speech recognition, which trains on the examples with the lowest signal-to-noise ...

  6. Sample complexity - Wikipedia

    en.wikipedia.org/wiki/Sample_complexity

    It is equivalent to a model-free brute force search in the state space. In contrast, a high-efficiency algorithm has a low sample complexity. [11] Possible techniques for reducing the sample complexity are metric learning [12] and model-based reinforcement learning. [13]

  7. Apprenticeship learning - Wikipedia

    en.wikipedia.org/wiki/Apprenticeship_learning

    Inverse reinforcement learning (IRL) is the process of deriving a reward function from observed behavior. While ordinary "reinforcement learning" involves using rewards and punishments to learn behavior, in IRL the direction is reversed, and a robot observes a person's behavior to figure out what goal that behavior seems to be trying to achieve. [3]

  8. Imitation learning - Wikipedia

    en.wikipedia.org/wiki/Imitation_learning

    Imitation learning is a paradigm in reinforcement learning, where an agent learns to perform a task by supervised learning from expert demonstrations. It is also called learning from demonstration and apprenticeship learning .

  9. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Supervised learning involves learning from a training set of data. Every point in the training is an input–output pair, where the input maps to an output. The learning problem consists of inferring the function that maps between the input and the output, such that the learned function can be used to predict the output from future input.