Search results
Results from the WOW.Com Content Network
An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the apparent centrifugal force is large enough to counteract the force of gravity. For the Earth , the required speed is on the order of 10 km/sec, compared to a typical low Earth orbit velocity of 8 km/sec.
This article is a list of notable unsolved problems in astronomy. Problems may be theoretical or experimental. Theoretical problems result from inability of current theories to explain observed phenomena or experimental results. Experimental problems result from inability to test or investigate a proposed theory.
In quantum mechanics, the case of a particle in a one-dimensional ring is similar to the particle in a box. The Schrödinger equation for a free particle which is restricted to a ring (technically, whose configuration space is the circle S 1 {\displaystyle S^{1}} ) is
Newton's theorem simplifies orbital problems in classical mechanics by eliminating inverse-cube forces from consideration. The radial and angular motions, r ( t ) and θ 1 ( t ), can be calculated without the inverse-cube force; afterwards, its effect can be calculated by multiplying the angular speed of the particle
The following is a list of notable unsolved problems grouped into broad areas of physics. [1] Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
Black Friday tends to cause a bit of chaos every year. Especially because it’s not so much a single day of good deals as a constantly expanding period of non-stop sales (and annoying ads).
An orbital ring is a dynamically elevated ring placed around the Earth that rotates at an angular rate that is faster than orbital velocity at that altitude, stationary platforms can be supported by the excess centripetal acceleration of the super-orbiting ring (similar in principle to a Launch loop), and ground-tethers can be supported from ...