Search results
Results from the WOW.Com Content Network
Accurate analysis of data using standardized statistical methods in scientific studies is critical to determining the validity of empirical research. Statistical formulas such as regression, uncertainty coefficient, t-test, chi square, and various types of ANOVA (analyses of variance) are fundamental to forming logical, valid conclusions.
The "thesis statement" comes from the concept of a thesis (θέσῐς, thésis) as it was articulated by Aristotle in Topica. Aristotle's definition of a thesis is "a conception which is contrary to accepted opinion." He also notes that this contrary view must come from an informed position; not every contrary view is a thesis. [3]
Coding reliability [4] [2] approaches have the longest history and are often little different from qualitative content analysis. As the name suggests they prioritise the measurement of coding reliability through the use of structured and fixed code books, the use of multiple coders who work independently to apply the code book to the data, the measurement of inter-rater reliability or inter ...
The interpretation of a p-value is dependent upon stopping rule and definition of multiple comparison. The former often changes during the course of a study and the latter is unavoidably ambiguous. (i.e. "p values depend on both the (data) observed and on the other possible (data) that might have been observed but weren't"). [69]
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Quantitative research using statistical methods starts with the collection of data, based on the hypothesis or theory. Usually a big sample of data is collected – this would require verification, validation and recording before the analysis can take place. Software packages such as SPSS and R are typically used for this purpose. Causal ...
According to Krippendorf, [34] "Content analysis is a research technique for making replicable and valid inference from data to their context" (p. 21). It is applied to documents and written and oral communication. Content analysis is an important building block in the conceptual analysis of qualitative data. It is frequently used in sociology.
The small N problem arises when the number of units of analysis (e.g. countries) available is inherently limited. For example: a study where countries are the unit of analysis is limited in that are only a limited number of countries in the world (less than 200), less than necessary for some (probabilistic) statistical techniques.