Search results
Results from the WOW.Com Content Network
An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...
In the example on the left, there are two arrays, C and R. Array C stores the adjacency lists of all nodes. Array R stored the index in C, the entry R[i] points to the beginning index of adjacency lists of vertex i in array C. The CSR is extremely fast because it costs only constant time to access vertex adjacency.
For external memory algorithms the external memory model by Aggarwal and Vitter [1] is used for analysis. A machine is specified by three parameters: M, B and D.M is the size of the internal memory, B is the block size of a disk and D is the number of parallel disks.
In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...
A decision version of the problem (testing whether some vertex u occurs before some vertex v in this order) is P-complete, [12] meaning that it is "a nightmare for parallel processing". [13]: 189 A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC ...
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
It serves adjacency queries in constant time with little storage overhead. This rich form of specifying an unstructured grid is in contrast to simpler specifications of polygon meshes such as a node and element list, or the implied connectivity of a regular grid. An alternative to the winged edge data structure is the Half-edge data structure.
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.