enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outline of energy - Wikipedia

    en.wikipedia.org/wiki/Outline_of_energy

    Tidal power, also called tidal energy, is a form of hydropower that converts the energy of tides into useful forms of power – mainly electricity, dynamic tidal power, tidal lagoons, tidal barrages Wave power is the transport of energy by ocean surface waves , and the capture of that energy to do useful work — for example, electricity ...

  3. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  4. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    In science, work is the energy transferred to or from an object via the application of force along a displacement.In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled.

  5. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    If the force F is derivable from a potential (conservative), then applying the gradient theorem (and remembering that force is the negative of the gradient of the potential energy) yields: = (), where A and B are the beginning and end of the path along which the work was done. The power at any point along the curve C is the time derivative: = = =.

  6. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    For example, the sum of translational and rotational kinetic and potential energy within a system is referred to as mechanical energy, whereas nuclear energy refers to the combined potentials within an atomic nucleus from either the nuclear force or the weak force, among other examples. [3]

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The generalized force, X, corresponding to the external variable x is defined such that is the work performed by the system if x is increased by an amount dx. For example, if x is the volume, then X is the pressure. The generalized force for a system known to be in energy eigenstate is given by:

  8. Thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Thermodynamics

    Transfers of energy as work, or as heat, or of matter, between the system and the surroundings, take place through the walls, according to their respective permeabilities. Matter or energy that pass across the boundary so as to effect a change in the internal energy of the system need to be accounted for in the energy balance equation.

  9. First law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/First_law_of_thermodynamics

    The work done on the system is defined and measured by changes in mechanical or quasi-mechanical variables external to the system. Physically, adiabatic transfer of energy as work requires the existence of adiabatic enclosures. For instance, in Joule's experiment, the initial system is a tank of water with a paddle wheel inside.