enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Work (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Work_(thermodynamics)

    Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.

  3. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...

  4. Power (physics) - Wikipedia

    en.wikipedia.org/wiki/Power_(physics)

    If the force F is derivable from a potential (conservative), then applying the gradient theorem (and remembering that force is the negative of the gradient of the potential energy) yields: = (), where A and B are the beginning and end of the path along which the work was done. The power at any point along the curve C is the time derivative: = = =.

  5. Outline of energy - Wikipedia

    en.wikipedia.org/wiki/Outline_of_energy

    Wave power is the transport of energy by ocean surface waves, and the capture of that energy to do useful work — for example, electricity generation, water desalination, or the pumping of water (into reservoirs). Machinery able to exploit wave power is generally known as a wave energy converter (WEC).

  6. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    There are some notable similarities in equations for momentum, energy, and mass transfer [7] which can all be transported by diffusion, as illustrated by the following examples: Mass: the spreading and dissipation of odors in air is an example of mass diffusion. Energy: the conduction of heat in a solid material is an example of heat diffusion.

  7. Energy - Wikipedia

    en.wikipedia.org/wiki/Energy

    Examples of transducers include a battery (from chemical energy to electric energy), a dam (from gravitational potential energy to kinetic energy of moving water (and the blades of a turbine) and ultimately to electric energy through an electric generator), and a heat engine (from heat to work). Examples of energy transformation include ...

  8. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The generalized force, X, corresponding to the external variable x is defined such that is the work performed by the system if x is increased by an amount dx. For example, if x is the volume, then X is the pressure. The generalized force for a system known to be in energy eigenstate is given by:

  9. Mechanical energy - Wikipedia

    en.wikipedia.org/wiki/Mechanical_energy

    The potential energy, U, depends on the position of an object subjected to gravity or some other conservative force. The gravitational potential energy of an object is equal to the weight W of the object multiplied by the height h of the object's center of gravity relative to an arbitrary datum: =