enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci numbers are also strongly related to the golden ratio: Binet's formula expresses the n-th Fibonacci number in terms of n and the golden ratio, and implies that the ratio of two consecutive Fibonacci numbers tends to the golden ratio as n increases.

  3. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The semi-Fibonacci sequence (sequence A030067 in the OEIS) is defined via the same recursion for odd-indexed terms (+) = + and () =, but for even indices () = (), . The bisection A030068 of odd-indexed terms s ( n ) = a ( 2 n − 1 ) {\displaystyle s(n)=a(2n-1)} therefore verifies s ( n + 1 ) = s ( n ) + a ( n ) {\displaystyle s(n+1)=s(n)+a(n ...

  4. Lucas number - Wikipedia

    en.wikipedia.org/wiki/Lucas_number

    The Lucas sequence has the same recursive relationship as the Fibonacci sequence, where each term is the sum of the two previous terms, but with different starting values. [1] This produces a sequence where the ratios of successive terms approach the golden ratio, and in fact the terms themselves are roundings of integer powers of the golden ...

  5. Liber Abaci - Wikipedia

    en.wikipedia.org/wiki/Liber_Abaci

    Another example in this chapter involves the growth of a population of rabbits, where the solution requires generating a numerical sequence. [8] Although the resulting Fibonacci sequence dates back long before Leonardo, [ 9 ] its inclusion in his book is why the sequence is named after him today.

  6. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    The first examples of such a p, for which π (p) is smaller than 2(p+1), are π (47) = 2(47 + 1)/3 = 32, π (107) = 2(107 + 1)/3 = 72 and π (113) = 2(113 + 1)/3 = 76. ( See the table below ) It follows from above results, that if n = p k is an odd prime power such that π ( n ) > n , then π ( n )/4 is an integer that is not greater than n .

  7. Lagged Fibonacci generator - Wikipedia

    en.wikipedia.org/wiki/Lagged_Fibonacci_generator

    A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...

  8. Zeckendorf's theorem - Wikipedia

    en.wikipedia.org/wiki/Zeckendorf's_theorem

    −43 = F −2 + F −7 + F −10 = (−1) + 13 + (−55) 0 is represented by the empty sum. 0 = F −1 + F −2 , for example, so the uniqueness of the representation does depend on the condition that no two consecutive negafibonacci numbers are used. This gives a system of coding integers, similar to the representation of Zeckendorf's theorem.

  9. Fibonorial - Wikipedia

    en.wikipedia.org/wiki/Fibonorial

    F, also called the Fibonacci factorial, where n is a nonnegative integer, is defined as the product of the first n positive Fibonacci numbers, i.e. !:= =,, where F i is the i th Fibonacci number, and 0! F gives the empty product (defined as the multiplicative identity, i.e. 1).