enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.

  4. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The primary objects of study in differential calculus are the derivative of a function, related notions such as the differential, and their applications. The derivative of a function at a chosen input value describes the rate of change of the function near that input value. The process of finding a derivative is called differentiation.

  5. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    In SI, this slope or derivative is expressed in the units of meters per second per second (/, usually termed "meters per second-squared"). Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the ...

  6. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    The derivative f′(x) of a curve at a point is the slope (rise over run) of the line tangent to that curve at that point. Differential calculus is the study of the definition, properties, and applications of the derivative of a function. The process of finding the derivative is called differentiation. Given a function and a point in the domain ...

  7. Multivariable calculus - Wikipedia

    en.wikipedia.org/wiki/Multivariable_calculus

    The partial derivative generalizes the notion of the derivative to higher dimensions. A partial derivative of a multivariable function is a derivative with respect to one variable with all other variables held constant. [1]: 26ff A partial derivative may be thought of as the directional derivative of the function along a coordinate axis.

  8. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    Tensor calculus has many applications in physics, engineering and computer science including elasticity, continuum mechanics, electromagnetism (see mathematical descriptions of the electromagnetic field), general relativity (see mathematics of general relativity), quantum field theory, and machine learning.

  9. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders. [21] [22] [23] Differential equations play a prominent role in engineering, physics, economics, biology, and other disciplines.